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In earlier work a systematic extension of the van der Waals square gradient model to nonequilibrium
one-component systems was given. In this work the focus was on heat and mass transfer through the liquid-
vapor interface as caused by a temperature difference or an over- or underpressure. We will give an extension
of this approach to multicomponent nonequilibrium systems in the systematic context of nonequilibrium
thermodynamics. An explicit expression for the pressure tensor is derived valid also for curved surfaces. It is
shown how the Gibbs relation should be modified in the interfacial region, in both equilibrium and nonequi-
librium. The two-dimensional isotropy of a curved interface is discussed. Furthermore, we give numerically
obtained profiles of the concentration, the mole fraction, and the temperature, which illustrate the solution for
some special cases.
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I. INTRODUCTION

In order to describe the equilibrium properties of an inter-
face between two coexisting phases, using a continuous
model, it is necessary to consider contributions to the Helm-
holtz energy which depend on the gradients of, for instance,
the density �1�. In 1893 van der Waals �2,3� was the first to
introduced such a term for a one-component system. In 1958
Cahn and Hilliard �4� extended the analysis of van der Waals
and introduced gradient terms of the mole fraction in binary
mixtures. As the Helmholtz energy density given by van der
Waals is no longer considered to be a function of the local
density or local densities alone, there is no local equilibrium
in the traditional sense in the interfacial region. The continu-
ous description is, in other words, “not autonomous.” We
refer to the monograph by Rowlinson and Widom �1� for a
thorough discussion of the van der Waals model in general
and of this point in particular. A lot of work on the equilib-
rium gradient model was done by Cornelisse and co-workers
�5,6�. We refer to his thesis for the relevant references. The
gradient model is often used for a system, in which proper-
ties vary in only one direction. We do not restrict ourselves
in this manner and do the analysis for the three-dimensional
system.

Because of the lack of local equilibrium, the extension of
nonequilibrium thermodynamics to a continuous description
of an interface is not straightforward. In earlier work �7–9�,
coauthored by one of us �D.B.�, we were able to show that
such an extension was possible for one-component fluids,
with all the variables dependent on the normal coordinate for
a planar interface. Temperature gradients, pressure differ-
ences, and the resulting heat flux and evaporation or conden-
sation fluxes were determined through the interface. For sys-
tems away from equilibrium, square gradient models have
been used before; we refer to �10–12� in this context. Very
little work has been done on systems with a varying tempera-
ture �12� and on two-phase systems, however. The systematic
treatment of heat and mass transport through the liquid-vapor
interface, along the lines sketched in �7–9�, was, to our
knowledge, new. In this paper we will extend this approach

to multicomponent nonequilibrium mixtures in three dimen-
sions. Because we consider three-dimensional systems, it is
possible to derive systematically all system properties which
were postulated in the one-dimensional description �7–9�.

The traditional local equilibrium hypothesis implies that
in nonequilibrium a small volume of the system at each mo-
ment of time can be considered to be in equilibrium. Thus,
all thermodynamic relations, valid for the whole system, re-
main valid for this small volume. The important assumption
is that the state of each small volume is determined only by
the properties of this volume and no other ones. To describe
the interface in equilibrium, one needs to introduce a depen-
dence on the density gradients, however. Such a description
is not local in the traditional sense: the system behavior in a
small volume depends on the properties of this volume and
the properties of the nearest neighborhood. This implies that
one cannot apply the usual local equilibrium hypothesis to
the interfacial region.

We will follow the traditional procedure used in nonequi-
librium thermodynamics. This requires several issues to be
clarified. In Sec. II we present the equilibrium thermodynam-
ics as it follows from the square gradient model. This model
has been widely applied to flat interfaces of one-component
mixtures in equilibrium. We extend it to the multicomponent
mixtures in three-dimensional space, such that the interface
may be curved. We derive all the thermodynamic properties,
necessary for the equilibrium description. Particularly, we
derive the general form of the pressure tensor which contain
the familiar “parallel” and “perpendicular” pressures as its
components. The equilibrium gradient model needs the equa-
tion of state which is used to describe the homogeneous mix-
tures. We give examples of them in Sec. III within the frame-
work of the one-fluid approach. An important issue is the
numerical values for the parameters, used in the gradient
model. For the mixture we use mixing rules, similar to those
used in the equation of state. We discuss this in Appendix A.

After that we are able to extend the thermodynamic de-
scription to nonequilibrium systems. This is explained in
Sec. IV. To be able to derive the entropy production one
needs the Gibbs relation. We show that within the interfacial
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region one can speak about two kinds of the Gibbs relation:
the ordinary Gibbs relation and the spatial Gibbs relation. We
discuss in Sec. V how these two equilibrium relations are
combined to the nonequilibrium Gibbs relation. In Sec. VI
we give the hydrodynamic equations. We use the so-called
one-fluid approach which has been shown �13,14� to be ap-
propriate for common mixtures.

In Sec. VII we discuss the consequences of the surface
symmetry �two-dimensional isotropy�. After deriving the en-
tropy production and using the Curie principle, we give the
linear relations between the thermodynamic fluxes and forces
in Sec. VIII. It is found that, for instance, the resistances for
transport through and into the interfacial region will in gen-
eral contain square gradient contributions. In Sec. IX we give
for some examples numerically obtained concentrations,
mole fraction, and temperature profiles for a binary mixture
with stationary mass and heat transport through the interfa-
cial region. Concluding remarks and a discussion are given
in the last section.

II. EQUILIBRIUM SQUARE GRADIENT MODEL

A mixture can be described by mass densities and tem-
perature T as independent variables. We will use ��r� as the
total mass density of the mixture or v�r�=1 /��r� as the mass
specific volume and ��1�r� , . . . ,�n−1�r�� as the mass fractions
of components. We will write � instead of the set of argu-
ments ��1 , . . . ,�n−1� and �� instead of the set
���1 , . . . ,��n−1� to simplify the formulas.

In the square gradient model the specific Helmholtz en-
ergy can be written as

f�r� = f0�T,�,�� + K��,�,��,��� , �2.1�

where

K��,�,��,��� �
1

2

�

��r�
����r��2 + 	

i=1

n−1
�i

��r�
� ��r� · ��i�r�

+
1

2 	
i,j=1

n−1
�ij

��r�
� �i�r� · �� j�r� . �2.2�

All coefficients �, �i, and �ij are assumed to be independent
of the temperature �they may depend on the density and the
mass fractions�. The density distributions are such that they
minimize the total Helmholtz energy

F = 

V

dr ��r�f�r� . �2.3�

Assuming that no chemical reactions occur, the total mass of
each component, mi=�Vdr �i�r���r� for i=1,n−1, and the
total mass m=�Vdr ��r� are constants. The problem of mini-
mizing the functional �2.3�, having n constraints, can be done
using the Lagrange method. Thus we minimize the integral

� = 

V

dr ��r�� f�r� − �n − 	
i=1

n−1

�i�i�r�
 � − 

V

dr p�r� .

�2.4�

Here �n and �i, where i=1,n−1 �all integers from 1 to n
−1�, are the Lagrange multipliers, which are the chemical
potential of the nth component and the quantities �k=�k
−�n, which we will call the “reduced chemical potentials,”
respectively. The Lagrange procedure gives for the chemical
potentials

�n =
�

��
���f0 + K�� − 	

i=1

n−1

�i�i − � · �� � � + 	
i=1

n−1

�i � �i� ,

�k =
�

��k
�f0 + K� −

1

�
� · ��k � � + 	

i=1

n−1

�ik � �i� ,

�2.5�

k = 1,n − 1,

which are constant through the surface in equilibrium, and
the scalar pressure

p�r� = �2 �

��
�f0 + K� − � � · �� � � + 	

i=1

n−1

�i � �i� ,

�2.6�

which is not constant.
Multiplying the first of the equations in Eq. �2.5� with

���r� and the other �n−1� ones with ��k�r� and summing
them all up,1 we obtain the expression

d�	
�r�
dx	

= 0, �2.7�

where we use the summation convention over double Greek
subscripts, which label the coordinate axes. The tensor

�	
�r� = p�r��	
 + �	
�r� �2.8�

is the pressure tensor. Furthermore, the tensor

�	
�r� = �
���r�
�x	

���r�
�x


+ 	
i=1

n−1

�i� ��i�r�
�x	

���r�
�x


+
���r�
�x	

��i�r�
�x


�
+ 	

i,j=1

n−1

�ij
��i�r�
�x	

�� j�r�
�x


�2.9�

will be referred to as the tension tensor.2 We note that both
�	
�r� and �	
�r� are symmetric tensors.

It is known that at the surface one can speak about the
“parallel” and the “perpendicular” pressure �1�, so the pres-

1This method is a generalization of the one, given by Yang et al.
�15� for a one-component system.

2The explicit expression for the pressure tensor in the square gra-
dient model for a multicomponent mixture was, to the best of our
knowledge, not given before.
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sure reveals tensorial behavior. For a flat surface, when all
the properties change in one direction only—say, x—one can
show that �xx�x� is the “perpendicular” pressure and p�x�
=�yy�x�=�zz�x� is the “parallel” pressure. For curved sur-
faces such an identification, however, can in general not be
made.

From expression �2.4� for p�r�, we can see that the Helm-
holtz energy given in Eq. �2.1� and the quantities which are
given in Eqs. �2.5� and �2.6� are related in the following way:

f�r� = �n + 	
i=1

n−1

�i�i�r� − p�r�v�r� . �2.10�

It is then natural to define the specific internal energy, en-
thalpy, and Gibbs energy densities as follows:

u�r� � f�r� + s�r�T ,

h�r� � u�r� + p�r�v�r� = �n + 	
i=1

n−1

�i�i�r� + s�r�T ,

g�r� � f�r� + p�r�v�r� = �n + 	
i=1

n−1

�i�i�r� , �2.11�

where the entropy is given by

s�r� = −
�

�T
f�r� = −

�

�T
f0�T,v,�1, . . . ,�n−1� . �2.12�

It is important to realize that the thermodynamic relations
�2.11� are true in the interfacial region only by definition.
Analogous definitions were used in �7–9� for a one-
dimensional one-component system and gave satisfactory re-
sults.

III. EQUATION OF STATE FOR A HOMOGENEOUS ONE-
FLUID MIXTURE

To obtain the homogeneous specific Helmholtz energy we
use the most common one-fluid equations of state3: �i� van
der Waals equation of state

pW�T,c,
� =
RTc

1 − B�
�c
− A�T,
�c2, �3.1�

�ii� Soave-Redlich-Kwong equation of state

pSRK�T,c,
� =
RTc

1 − B�
�c
−

A�T,
�
1 − B�
�c

c2, �3.2�

and �iii� Peng-Robinson equation of state

pPR�T,c,
� =
RTc

1 − B�
�c
−

A�T,
�
1 + 2B�
�c − B2�
�c2c2.

�3.3�

In the one-fluid approach, the constants A�T� and B depend
on the fractions of the species due to the mixing rules

A�T,
� = 	
i,k=1

n

aik�T�
i
k,

B�
� = 	
k=1

n

bk
k, �3.4�

where usually aik�T�=�ai�T�ak�T�, and ak�T� and bk are the
corresponding coefficients for pure substances. The matrix
aik�T� is symmetric in its indices.

To find the homogeneous molar Helmholtz energy
f0

��T ,c ,
� we integrate the equations of state over the volume
at constant temperature and molar fractions of the compo-
nents. The superscript � here indicates a molar quantity. The
integration constant should be chosen such that the specific
Helmholtz energy of the system with a small mixture’s con-
centration �c→0� is equal to the specific Helmholtz energy
for a mixture of ideal gases. Integrating the equation of state
and using Eq. �B7� in Appendix B, we obtain following ex-
pression for the homogeneous molar Helmholtz energy:

f0
��T,c,
� = − RT ln� e

cNA

w�T,
�
�3�T,
�

�1 − B�
�c��
− A�T,
�c�„B�
�c… , �3.5�

where ���� has corresponding expression for each equation
of state,

�W��� = 1,

�SRK��� =
1

�
ln�1 + �� ,

�PR��� =
1

2�2�
ln�1 +

2�2�

1 + ��1 − �2�
� . �3.6�

IV. NONEQUILIBRIUM SURFACE

To describe nonequilibrium inhomogeneous systems we
shall assume that all the relations between thermodynamic
variables valid in equilibrium, which were discussed in the
previous sections, remain valid away from equilibrium.
Away from the surface this is the usual assumption made in
nonequilibrium thermodynamics. In the interfacial regions it
extends this assumption to places where the gradient contri-
butions become important. As is said in �16�, the validity of
such a hypothesis can be verified only by experiment.

In nonequilibrium the density ��r , t� �or, alternatively, the
volume per unit of mass v�r , t�� and mass fractions ��r , t�
depend on the time explicitly. We do not have the restriction
of a constant temperature and chemical potentials: T�r , t�,
�n�r , t�, and �i�r , t� may therefore depend on both position
and time. All the other thermodynamic quantities may de-
pend on position and time via their dependence on the tem-
perature T�r , t�, density ��r , t�, and mass fractions ��r , t�,
found in Secs. II and III.

New variables which appear in the nonequilibrium de-
scription are the velocities of each component

3In Sec. III and Appendix B we use densities per mole: the total
molar concentration c and the molar fractions �
1 , . . . ,
n−1��
.
Other densities per mole are denoted by the superscript �.
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�v1�r , t� , . . . ,vn�r , t��. We will, however, use the barycentric
velocity of the whole mixture,

v�r,t� =
1

��r,t�	i=1

n

�i�r,t�vi�r,t� , �4.1�

and the diffusion fluxes,

Jk � �k�vk − v�, k = 1,n − 1, �4.2�

as independent variables. The mass densities of the compo-
nents are �k=��k for k=1,n−1 and �n=�−	i=1

n−1�i.

V. GIBBS RELATION

An important part of the nonequilibrium description is the
relation between the rate of change of thermodynamic poten-
tials and the independent thermodynamic variables—in other
words, the Gibbs relation. As with other thermodynamic re-
lations, it should be extended from the equilibrium one. We
shall therefore discuss the equilibrium Gibbs relation first
and then go to the nonequilibrium description.

A. Equilibrium Gibbs relation

In a nonhomogeneous equilibrium system the thermody-
namic properties may change from one equilibrium state to
another as well as from one point in space to another within
the same equilibrium state. This means that we should for-
mulate two Gibbs relations, which we will call the ordinary
Gibbs relation and the spatial Gibbs relation respectively.

Consider the variation of the total Helmholtz energy,
�F(T ,��r� ,��r� ,���r� ,���r�), due to a variation of the vari-
ables and their gradients:

�F�T,�,�,��,��� = 

V

dr�f�T,�,�,��,�����

+ ��f�T,�,�,��,���� , �5.1�

where

�f�T,�,�,��,��� =
� f

�T
�T +

� f

��
�� + 	

i=1

n−1
� f

��i
��i +

� f

���
� � �

+ 	
i=1

n−1
� f

���i
� � �i �5.2�

is the total thermodynamic differential of the specific Helm-
holtz energy with respect to the thermodynamic variables
and their gradients. Given Eqs. �2.1�, �2.5�, and �2.6�, Eq.
�5.2� becomes

�f�T,�,�,��,��� =
� f0

�T
�T +

p

�2�� + 	
i=1

n−1

�i��i +
1

�
� · �� ,

�5.3�

where

����,�,��,��� � �� � � + 	
i=1

n−1

�i � �i���

+ 	
k=1

n−1 ��k � � + 	
i=1

n−1

�ik � �i���k.

�5.4�

The total Helmholtz energy variation becomes then

�F�T,�,�,��,��� = 

V

dr� f�T,�,�,��,�����

+ �� � f0

�T
�T +

p

�2�� + 	
i=1

n−1

�i��i��
�5.5�

since the boundary integral �SdS ns ·�� disappears, because
we can choose boundaries of the system such that the normal
component of the density gradients are zero everywhere
along the boundaries. We will interpret the expression in pa-
rentheses as the total thermodynamic differential of the spe-
cific Helmholtz energy:

�f�T,�,�,��,��� =
� f0

�T
�T +

p

�2�� + 	
i=1

n−1

�i��i �5.6�

or alternatively

�f„T,v�r�,�1�r�, . . . ,�n−1�r�… = − s�r��T − p�r��v�r�

+ 	
i=1

n−1

�i��i�r� . �5.7�

We note the ambiguity in the definition of the total ther-
modynamic differential of the specific Helmholtz energy.
The different expressions �5.3� and �5.6� for �f give the same
expression �5.5� for �F, due to the cancellation of the bound-
ary contributions. This can be interpreted such that the mea-
surable quantity is only the total thermodynamic differential
of the total Helmholtz energy, but not the total thermody-
namic differential of the specific one. We will use Eq. �5.6�,
remembering this ambiguity.

Equation �5.7� has the form of the usual Gibbs relation for
a homogeneous mixture. This implies that with respect to the
variations of the thermodynamic variables the specific Helm-
holtz energy is still homogeneous of the first order. We will
call Eq. �5.7� the ordinary Gibbs relation. With the help of
Eqs. �2.10� and �5.7� we obtain the Gibbs-Duhem relation

s�r��T − v�r��p�r� + ��n + 	
i=1

n−1

�i�r���i = 0. �5.8�

Using the fact that the temperature and chemical poten-
tials are constant in equilibrium and using Eqs. �2.7� and
�2.10� together with Eq. �2.8�, we obtain
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�
f�r� = − p�r��
v�r� + 	
i=1

n−1

�i�
�i�r� + v�r��	�	
�r� .

�5.9�

We will call Eq. �5.9� the spatial Gibbs relation. As the tem-
perature is independent of the position, the expected
−s�r��
T term is zero.

For the internal energy defined above, the ordinary Gibbs
relation reads

�u„s�r�,v�r�,��r�… = T�s�r� + 	
i=1

n−1

�i��i�r� − p�r��v�r�

�5.10�

and the spatial Gibbs relations reads

�u�r� = T � s�r� + 	
i=1

n−1

�i � �i�r� − p�r� � v�r�

− v�r�
��	
�r�

�x	

. �5.11�

Notice in particular the last contribution on the right-hand
side, which is only unequal to zero in the interfacial region.

B. Nonequilibrium Gibbs relation

Similar to the description of a homogeneous fluid, we
extend the equilibrium Gibbs relations in the simplest way.
One needs to make one important observation before such an
extension, however: the equilibrium equation �5.10� de-
scribes the change of local thermodynamic variables between
two different states at a fixed point in space. These two states
can be separated in time. So we can say that this equation
describes the change of local thermodynamic variables in
time at a fixed point in space:

T�r,t�
�s�r,t�

�t
=

�u�r,t�
�t

− 	
i=1

n−1

�i�r,t�
��i�r,t�

�t
+ p�r,t�

�v�r,t�
�t

.

�5.12�

We similarly use the equilibrium spatial Gibbs relation for
the specific internal energy, Eq. �5.11�, for nonequilibrium
case:

T�r,t� � s�r,t� = �u�r,t� − 	
i=1

n−1

�i�r,t� � �i�r,t�

+ p�r,t� � v�r,t� − v�r,t�
��	
�r,t�

�x	

.

�5.13�

Contracting Eq. �5.13� with v�r , t� and summing with Eq.
�5.12� we find

T�r,t�
ds�r,t�

dt
=

du�r,t�
dt

− 	
i=1

n−1

�i�r,t�
d�i�r,t�

dt
+ p�r,t�

dv�r,t�
dt

− v�r,t�v
�r,t�
��	
�r,t�

�x	

, �5.14�

where we used the substantial �barycentric� time derivative

d

dt
=

�

�t
+ v · � . �5.15�

Equation �5.14� is the Gibbs relation for the nonequilibrium
two-phase mixture including the interface. One can show
that it reduces to the Gibbs relation used by Bedeaux et al.
�7� for the case of a one-component fluid. The above analysis
gives more insight into the origin of the contribution propor-
tional to the divergence of the surface tension field. This was
not clarified in the analysis of Bedeaux et al. This defined all
quantities and gave all relations needed for a nonequilibrium
description using a generalization of the hypothesis of local
equilibrium. We will further omit the arguments �r , t� to sim-
plify the notation.

Before we proceed further, we shall discuss an important
issue here. One may wonder why we use the Gibbs relations
for the specific internal energy, not for the specific Helmholtz
energy, to extend them to nonequilibrium analysis. The
Gibbs relations for the specific Helmholtz energy can be ex-
tended to nonequilibrium in the following way:

� f�r,t�
�t

= − s�r,t�
�T�r,t�

�t
+ 	

i=1

n−1

�i�r,t�
��i�r,t�

�t

− p�r,t�
�v�r,t�

�t
, �5.16�

�f�r,t� = 	
i=1

n−1

�i�r,t� � �i�r,t� − p�r,t� � v�r,t�

+ v�r,t�
��	
�r,t�

�x	

. �5.17�

For the ordinary Gibbs relations, like in the homogeneous
description, there is no preference in the thermodynamic po-
tential. Given Eq. �2.11�, the equilibrium ordinary Gibbs re-
lations �5.10� and �5.7� are equivalent. This is also true for
the equilibrium spatial Gibbs relations �5.11� and �5.9�. The
nonequilibrium analogous of Eq. �2.11� makes the nonequi-
librium ordinary Gibbs relations �5.12� and �5.16� also to be
equivalent. The situation is different for the nonequilibrium
spatial Gibbs relations, however.

The nonequilibrium spatial Gibbs relations �5.13� and
�5.17� are not equivalent. The reason for that is that Eq. �5.9�
does not contain the term proportional to �T, since �T=0 in
equilibrium. In nonequilibrium �T�r , t��0 and the spatial
Gibbs relation should have a form
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�f�r,t� = − s�r,t� � T�r,t� + 	
i=1

n−1

�i�r,t� � �i�r,t�

− p�r,t� � v�r,t� + v�r,t�
��	
�r,t�

�x	

, �5.18�

which is not the same as Eq. �5.17�.
We see that the Gibbs relations for the specific internal

energy describe the system more adequately since they do
not suffer from the unaccounted effect of possible tempera-
ture changes. Because of this reason, we should use the
Gibbs relations for the specific internal energy, not the spe-
cific Helmholtz energy, to extend them to nonequilibrium.

VI. HYDRODYNAMICS OF A ONE-FLUID
MIXTURE

We can now derive all hydrodynamic equations, using the
conservation laws of matter, momentum and energy. The
laws of conservation of mass can be written as

d�

dt
= − � � · v ,

�
d�k

dt
= − � · Jk, k = 1,n − 1, �6.1�

where the dot indicates a contraction.
The momentum conservation law, or the equation of mo-

tion, can be written as

�
dv


dt
= −

���	
 + �	
�
�x	

+ �g
, �6.2�

where g is the gravitational acceleration. �	
 is the thermo-
dynamic pressure tensor, and �	
�r , t� is the viscous pressure
tensor, which still is to be determined. The viscous pressure
tensor without subscripts will be indicated by ��r , t�. We
assume that this tensor is symmetric.

The law of energy conservation is �see �16��

�
de

dt
+ � · �Je − �ve� = 0, �6.3�

where Je is the total energy flux and e is the total specific
energy which is given by

e�r,t� = u�r,t� + ��r,t� + ��r� . �6.4�

� is the gravitational potential field, so that g�−��. We
will assume that � does not depend on the time explicitly.

We restrict ourselves to systems where the acceleration of
the components relative to each other is small compared to
the acceleration of the mixture’s center of mass. This implies
that the kinetic energy of the components relative motion is
small compared to the kinetic energy of the mixture’s center-
of-mass motion. This is true when the relaxation time of the
relative motion is very small. For the common mixtures, this
is the case. Thus, the specific kinetic energy is

��r,t� =
1

2
v2�r,t� . �6.5�

From momentum conservation we obtain

�
d�

dt
= − v


���	
 + �	
�
�x	

+ �v · g . �6.6�

For the internal energy we get

�
du

dt
= − � · Jq − �	
v
	 − p � · v + v


��	


�x	

, �6.7�

where v
	��v
 /�x	 and where

Jq � Je − �ve − pv − � · v �6.8�

is the total heat flux.
We write the Gibbs relation �5.14� in the form

T�
ds

dt
= �

du

dt
− 	

i=1

n−1

��i
d�i

dt
+ p�

dv
dt

− v


��	


�x	

. �6.9�

Using previous equations and performing algebraic transfor-
mations we obtain

�
ds

dt
= − � · � 1

T
�Jq − 	

k=1

n−1

�kJk�
 + Jq · �
1

T
− 	

k=1

n−1

Jk · �
�k

T

−
1

T
�	
v
	. �6.10�

VII. TWO-DIMENSIONAL ISOTROPY OF THE
SURFACE

Even though the fluid does not have any preferred direc-
tion microscopically, we cannot say that it has a three-
dimensional isotropy everywhere, since there are the mesos-
copic directions of the density gradient. The two-phase
equilibrium state is not three-dimensionally isotropic.

Special care should be taken to determine the normal di-
rection to the surface. With the help of the equilibrium analy-
sis one can obtain the equilibrium densities distributions in
the interfacial region. It is possible therefore to determine the
equidensity surfaces—i.e., mathematical surfaces where ei-
ther density is constant and which are normal to the corre-
sponding density gradient. One may in principle use the gra-
dients of either of the densities to define a direction normal
to the surface. For the mixture we find it more convenient,
however, to define a normal using the tension field �	�	
�r�.
We call the surfaces which are everywhere normal to this
vector field the equitensional surfaces. The thickness of the
interfacial region will be assumed to be much smaller then
the radii of curvature of these equitensional surfaces. Given
this assumption the tension vector field in good approxima-
tion does not change its direction through the interface. Thus,
it is possible to speak about the normal vector n on the
surface, which is parallel to the tension vector in this region.

This allows us to speak about the symmetry of the sur-
face. If the surface curvature is the same in both directions,
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parallel to the surface, a small surrounding of the normal
through the interfacial region is invariant for any rotations
around and reflections with respect to this normal. Thus we
can say, that such a system has a local two-dimensional isot-
ropy. We shall refer to such a property of the interfacial
region as the two-dimensional isotropy of the surface. If the
two radii of curvature differ, the surface is not two-
dimensionally isotropic any more. For a surface which is thin
compared to the radii of curvature one can, in a good ap-
proximation, consider it to be two-dimensionally isotropic.
We assume this to be the case for the systems we will con-
sider.

If the system has three-dimensional �3D� isotropy, then
coupling occurs only between forces and fluxes of the same
3D tensorial character. For an interfacial region, which is 2D
isotropic, coupling occurs only between forces and fluxes of
the same 2D tensorial character. Thus, phenomenological co-
efficients must remain unchanged under rotations and reflec-
tions with respect to the direction normal to the surface. Be-
low we show how one can extract 2D-isotropic quantities
from 3D scalars, vectors, and tensors.

We shall use the special notation for the tensorial quanti-
ties of different order and different behavior in this section.
Any tensorial quantity is denoted as Q�dr�. d indicates the
dimensionality of the space in which the quantity is being
considered and can be either 3 or 2 here. r indicates the rank
of the tensorial quantity and can be s for scalar, v for vecto-
rial, or t for tensorial quantities. We refer to Appendix C for
the details.

Consider the entropy production, which has the form

�s = S�3s�R�3s� + V�3v� · W�3v� + T�3t�:��3t�, �7.1�

where the double dot indicates double contraction. To be able
to use the 2D Curie principle one may proceed along the
steps explained in �16�. To clarify this we shall write this
expression as a combination of independent 2D scalars, vec-
tors, and tensors. The details are given in Appendix C; here,
we will give the results.

One can split the vectorial and tensorial quantities into the
normal and parallel components with respect to the normal
vector n on the surface. We use the subscripts � and � for
this quantities. Because of the 2D isotropy of the surface,
these quantities reveal the scalar, vectorial, or the tensorial
behavior under rotations around and reflections with respect
to this normal in a 2D space �we refer to Appendix C for the
details�. This will be indicated by superscripts 2r as ex-
plained above.

Any 3D scalar is also a 2D scalar, since it remains invari-
ant under any kind of coordinate transformations:

S�3s� = S�2s� � S�s�. �7.2�

Any 3D vector V�3v� can be written as �cf. the notation in Eq.
�C1��

V�3v� = �V�
�s�,V�

�2v� � . �7.3�

Any 3D tensor T�3t� can be written as �cf. the notation in Eq.
�C4��

T�3t� = �T��
�s� T��

�2v�

T��
�2v�T��

�2t� � = �T��
�s� T��

�2v�

T��
�2v� 1

2 �Tr T��
�2t��U�2t� + T

�

��
�2t� � ,

�7.4�

where “Tr” indicates the trace of a tensor.
Combining these components we obtain for the entropy

production

�s = �s,scal + �s,vect + �s,tens, �7.5�

where

�s,scal = S�s�R�s� + V�
�s�W�

�s� + T��
�s� ���

�s� +
1

2
�Tr T��

�2t���Tr ���
�2t�� ,

�s,vect = V�
�2v� · W�

�2v� + 2T#
�2v� · �#

�2v�,

�s,tens = T
�

��
�2t�:�

�

��
�2t�, �7.6�

where T#
�2v�� 1

2 �T��
�2v�+T��

�2v�� and we have used the symmetry

of the tensor T�3t�. The circle above a 2�2 tensor like in T
�

indicates the symmetric traceless part of this tensor. The 2D
Curie principle tells us that coupling occurs only between
quantities of the same 2D tensorial order.

VIII. PHENOMENOLOGICAL EQUATIONS

A. Force-flux relations

Comparing Eq. �6.10� with the balance equation for the
entropy,

�
ds

dt
= − � · Js + �s, �8.1�

we conclude that the entropy flux and the rate of entropy
production are given by

Js =
1

T
�Jq − 	

k=1

n−1

�kJk� , �8.2�

�s = Jq · �
1

T
− 	

k=1

n−1

Jk · �
�k

T
−

1

T
�	
v
	. �8.3�

According to the second law �s is non-negative. Comparing
Eq. �8.3� with Eqs. �7.5� and �7.6� we can write the entropy
production for a 2D-isotropic surface as the sum of two-
dimensional scalar, vectorial, and tensorial contributions

�s,scal = Jq,���

1

T
− 	

k=1

n−1

Ji,���

�k

T
− ���v��

1

T
���

−
1

2
��� · v��

1

T
�Tr ���� ,

�s,vect = Jq,� · ��

1

T
− 	

k=1

n−1

Ji,� · ��

�k

T
− 2v# ·

1

T
�#,
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�s,tens = ���v�

�

�:
1

T
�
�

�� , �8.4�

where v#� 1
2 ���v�+��v��.

The linear force-flux equations for the scalar force-flux
pairs are

��

1

T
= Rqq,��Jq,� − 	

k=1

n−1

Rqk,��Jk,� − Rq�,�����

− Rq�,��

1

2
�Tr ���� ,

��

�i

T
= Riq,��Jq,� − 	

k=1

n−1

Rik,��Jk,� − Ri�,�����

− Ri�,��

1

2
�Tr ���� ,

1

T
��v� = R�q,��Jq,� − 	

k=1

n−1

R�k,��Jk,� − R��,�����

− R��,��

1

2
�Tr ���� ,

1

T
��� · v�� = R�q,��Jq,� − 	

k=1

n−1

R�k,��Jk,� − R��,�����

− R��,��
1

2
�Tr ���� . �8.5�

For the vectorial force-flux pairs they are

Jq,� = Lqq,����

1

T
− 	

k=1

n−1

Lqk,����

�k

T
− Lq�,�#

1

T
v#,

Ji,� = Liq,����

1

T
− 	

k=1

n−1

Lik,����

�k

T
− Li�,�#

1

T
v#,

2�# = L�q,#���

1

T
− 	

k=1

n−1

L�i,#���

�k

T
− L��,##

1

T
v#, �8.6�

and for the tensorial force-flux pairs they are

�
�

�� = L�

1

T
���v�

�

� . �8.7�

All the resistivities R and conductivities L are scalars. One
can easily invert the resistivity matrix R and write the corre-
sponding relations for the fluxes using the conductivities L
and vice versa.

For flat surfaces it was found �17� that the resistivities are
additive in the normal direction to the surface while the con-
ductivities are additive in the parallel direction. We therefore
consider it convenient to write the force-flux relations in the
given form.

B. Phenomenological coefficients

The Onsager relations for the phenomenological coeffi-
cients are

Rqk,�� = Rkq,��, Lqk,�� = Lkq,�� ,

Rq�,�� = R�q,��, Lq�,�# = L�q,#� ,

Rq�,�� = R�q,��, Lik,�� = Lki,�� ,

Rik,�� = Rki,��, Li�,�# = L�i,#� ,

Ri�,�� = R�i,��,

Ri�,�� = R�i,��,

R��,�� = R��,��. �8.8�

As the ordinary Onsager relations, these are the consequence
of microscopic time-reversal invariance.

As usual, the values of the phenomenological coefficients
locally will depend on the local thermodynamic variables.
These are the local concentrations � and � and the tempera-
ture T. In the gradient theory the density gradients are also
considered as local thermodynamic variables. In view of this
the phenomenological coefficients may also depend on the
gradients of the densities. The values of the phenomenologi-
cal coefficients and their functional dependence on the ther-
modynamic variables are not given by the mesoscopic
theory. They should be either calculated from statistical me-
chanical considerations or from experiments, either real or
computer simulated. While they are well investigated for ho-
mogeneous fluids and fluid mixtures, such data are not avail-
able for the surface coefficients of fluid mixtures.

We shall use the following expression for each of the
resistivity coefficients:

R = RI + �RII − RI�
� − �I

�II − �I + 	�RII + RI�
����2

���eq�max
2 ,

�8.9�

where RI and RII are the resistivities for the coexisting ho-
mogeneous phases in the equilibrium state. Here � is the
order parameter; typically, this is just the density � or the
molar concentration c. �eq is the equilibrium profile, and
���eq�max is the maximum value of the gradient of this pro-
file. The first two terms are just a smooth transition of the
resistivity from the value in the one phase to the value in the
other phase. This is the first natural assumption for the resis-
tivity profile. The origin of the third term comes from the
assumption of an excess resistivity in the interfacial region.
Particularly one can observe this fact in the molecular dy-
namic simulations �18�. The exact form of this term may be
debated. It was chosen to model a rise of the resistivity in the
interfacial region. The ����2 factor makes this term signifi-
cant only in the interfacial region. It is scaled with ���eq�max

2

in order to make this factor dimensionless and not far from
unity. The �RII+RI� factor gives the average value of the
resistivity of both phases. The dimensionless factor 	 deter-
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mines the magnitude of this effect. The homogeneous resis-
tivities RI and RII are the known functions of the mass frac-
tion and the temperature along the plane of coexistence.

For the conductivities used in Eqs. �8.6� and �8.7� one
may use expressions analogous to Eq. �8.9�. The conductivi-
ties along the surface are expected to be additive �17�. Thus
it is important to use this equation for the conductivities and
not for the resistivities along the surface. In this respect it is
important to note that 	 may in principle be negative as long
as the corresponding R and L remain everywhere positive.
For the resistivity this would describe an interfacial region
with a lower resistivity, and for the conductivities it would
describe an interfacial region with a lower conductivity. Be-
low we will only consider positive 	’s.

IX. TYPICAL PROFILES FOR THE BINARY MIXTURE

In order to illustrate the results which one can obtain us-
ing the above procedure, we have applied it to a special case.
This requires a number of approximations connected to the
specific mixture and geometry. We consider a flat liquid-
vapor interface of the binary mixture of cyclohexane �first
component� and n-hexane �second component� in nonequi-
librium stationary conditions using the van der Waals equa-
tion of state. We only consider fluxes and gradients in the
direction normal to the surface. Furthermore, we neglect vis-
cous contributions. The force-flux relations then reduce to

d

dx

1

T
= RqqJq − Rq1J1,

d

dx

�

T
= R1qJq − R11J1. �9.1�

The differential equations for the temperature, density, and
fraction profiles were solved using a numerical method for a
two-point boundary-value problem. This was done using a
collocation method implemented in the Matlab function
bvp4c �19�. In this procedure we used the equilibrium pro-
files found previously as an initial state. Further details of the
solution procedure will be given in the following paper. The
numerical values of the homogeneous resistivities were taken
from �20�. In all cases the integrated molar content for both
components was kept equal to the equilibrium value.

The first aspect we will try to clarify is the influence of
the additional resistivity to transport. We consider in particu-
lar two cases. In the first only, 	qq, the 	 factor for the heat
resistivity coefficient Rqq, is unequal to zero, and in the sec-
ond only, 	11, the 	 factor for the diffusion resistivity coef-
ficient R11, is unequal to zero. In Figs. 1–3 we plot the total
molar concentration, the mole fraction, and the temperature
for the case that only 	qq�0. The system is brought out of
equilibrium by reducing the pressure on the vapor side to
0.95peq, where peq is the equilibrium pressure. The tempera-
tures on both ends of the box are kept equal to the equilib-
rium temperature Teq. In Fig. 1 we see that the total molar
concentration does not depend on the value of 	qq very
much. This is different for the mole fraction which increases
about 2% on the vapor side when 	qq increases from 0 to 10.

The temperature decreases due to the evaporation. In all
cases the extrapolated temperature in the liquid is higher then
the value in the vapor, where we extrapolate to the inflection
point of the total molar concentration. For 	qq=10 the mini-
mum of the temperature is below both extrapolations. In that
case the temperature “jump” in the the extrapolated profiles
has increased to about 3 °C.

In Figs. 4 and 5 we plot the mole fraction and the tem-
perature for the case that only 	11�0. Further conditions are
the same as in the previous example. We did not plot the total
molar concentration which is not very different from the one
given in Fig. 1. The modification of the mole fraction is now
more dramatic. In the vapor it decreases up to 27%. The
temperature increases for larger values of 	11. This is related
to a decrease of the evaporation. The temperature jump in the
extrapolated profiles is in all cases not more than 0.5 °C.

The third example considers the 	qq�0 case when the
vapor pressure and temperature are kept equal to the equilib-
rium values and the liquid temperature is 5% higher then the

−20 −15 −10 −5 0 5 10 15 20
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

x (nm)

c
(m

ol
)

α
qq

= 0

α
qq

= 1

α
qq

= 10

FIG. 1. Molar concentration profile for different 	qq at p
=0.95peq and Tg=T�=Teq.

−20 −15 −10 −5 0 5 10 15 20
0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

0.51

0.52

x (nm)

ξ

α
qq

= 0

α
qq

= 1

α
qq

= 10

FIG. 2. Molar fraction profile for different 	qq at p=0.95peq and
Tg=T�=Teq.

NONEQUILIBRIUM PROPERTIES OF A TWO- … PHYSICAL REVIEW E 77, 061101 �2008�

061101-9



equilibrium value. The total concentration profile is again
similar to Fig. 1 and not given. Figures 6 and 7 give the mole
fraction and temperature profiles. The change in the mole
fraction went up to 12%. The temperature jump goes up to
about 20 °C.

As a fourth example, we consider the 	11�0 case when
the vapor pressure and temperature are kept equal to the
equilibrium values and the liquid temperature is 5% higher
then the equilibrium value. The total concentration profile is
still similar to Fig. 1 and not given. Figures 8 and 9 give the
mole fraction and temperature profiles. One can notice again
the more dramatic behavior of the mole fraction and tem-
perature profiles for large values of 	11.

Next we will discuss the influence of the pressure. We
choose both 	qq and 	11 equal to 1 for this case. The total
concentration profiles are again similar to Fig. 1 and not
given. In Figs. 10 and 11 we give the mole fraction and
temperature profiles. The temperature profile goes down for
evaporation and up for condensation as expected. The mole
fraction in the vapor rises a little bit for condensation and
decreases for evaporation.

In the last case we consider the influence of the tempera-
ture on the liquid side �see Figs. 12 and 13�. The total con-
centration profile is again similar to Fig. 1 and not given.
Lowering �raising� T� gives evaporation �condensation�. This
lowers �raises� the temperature on the vapor side as expected.
The mole fraction decreases �raises� about 5% for condensa-
tion �evaporation�. This is the opposite of what happens in
the previous case.

X. DISCUSSION AND CONCLUSIONS

In this paper we have built the framework for the non-
equilibrium description of the surface within the square gra-
dient model. This required the following important steps.

Using the assumption that in the interfacial region the
fluid can be described by the local densities and their gradi-
ents, we have extended the gradient models, used to describe
one-component fluids and binary mixtures, to three-
dimensional multicomponent mixtures. The condition which
the system should satisfy in equilibrium is that the total
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Helmholtz energy be minimal. With the help of the Lagrange
method it was possible to derive the equations which the
profile distribution should satisfy, given the fixed total mass
content of the components. The Lagrange multipliers are
equal to the chemical potentials of the coexisting liquid and
vapor. It was also possible to determine the pressure behav-
ior in the interfacial region. It is crucial that the pressure has
a tensorial behavior. The difference between the tensorial
part of the pressure tensor and the scalar part determines the
surface tension.

It was possible to relate the thermodynamic variables for
an inhomogeneous fluid in the same way as it is done for a
homogeneous one. However, unlike the homogeneous mix-
ture, these variables contain gradient contributions. This
means that local equilibrium for such a system is not satis-
fied. The local behavior of the mixture is determined not
only by its local properties but also by its nearest surround-
ings. Moreover, in contrast to the homogeneous description,
the local properties now vary in the space.

The equilibrium analysis gives the basis to extend the
description to nonequilibrium systems.

An important part of the thermodynamic description is the
relations between the rate of change of the thermodynamic
variables: the Gibbs relations. In contrast to a homogeneous
system, for an inhomogeneous system, in particular the in-
terfacial region, thermodynamic variables vary also in space.
Thus, one can speak about the relation between the rates of
change of thermodynamic variables for a given point in
space: the ordinary Gibbs relation. One has to speak also
about the rates of change of the thermodynamic variables in
space: the spatial Gibbs relation. Even though the thermody-
namic potentials, particularly the specific Helmholtz energy,
depend on the spatial derivatives of the densities, we have
shown that variation of these gradients does not contribute to
the ordinary Gibbs relations. Thus, the ordinary Gibbs rela-
tions have the ordinary form of the Gibbs relations for the
homogeneous mixture. As the spatial derivatives of the tem-
perature, chemical potentials, and pressure tensor are zero in
equilibrium, we can determine the spatial Gibbs relation. The
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new term which appears because of the inhomogeneity is
�	�	
�r�, which is only unequal to zero close to the surface.

The next important step is to extend the equilibrium
Gibbs relations to nonequilibrium. It was shown that the or-
dinary Gibbs relation corresponds to the partial time depen-
dence of the thermodynamic variables and the spatial Gibbs
relation corresponds to the partial space dependence of the
thermodynamic variables. Combining these two equations
we were able to write the nonequilibrium Gibbs relation.
One should be careful understanding the Gibbs relation for a
nonequilibrium inhomogeneous system. Unlike a homoge-
neous system, the properties may depend on position and
time independently. That is the reason why one should dis-
tinguish the ordinary and spatial Gibbs relations. The differ-
ential between two states in the same spatial point corre-
sponds to the partial time differential, not to the total time
differential. Because the spatial Gibbs relation differs from
the ordinary one, we have an essentially new term in the
nonequilibrium Gibbs relation.

For the nonequilibrium description we use the standard
hydrodynamic equations for the so-called “one-fluid” model

of the fluid. Together with the Gibbs relation and the balance
equation for the entropy density, we were then able to obtain
explicit expressions for the entropy flux and the entropy pro-
duction not only in the homogeneous phases, but also in the
interfacial region. This identifies the conjugate thermody-
namic forces and fluxes in the interfacial region. This made it
possible to give the general force-flux relations in this re-
gion. The explicit form of these equations depends on the
symmetry of the system. We discuss why one can consider a
fluid-fluid interface to be two-dimensional isotropic. Due to
the Curie principle, coupling occurs only between two-
dimensionally isotropic scalars, vectors, and tensors of the
same rank in such a system. The resulting force-flux relations
in the interfacial region are accordingly simplified and given.
It is interesting that the components of the fluxes normal to
the surface are scalar and couple therefore to reactions in the
interfacial region. This is related to active transport, a phe-
nomenon of great importance. We do not explicitly consider
a reacting system in this paper, but may do so in a future
publication. Having all these equations the nonequilibrium
description of the surface is complete.

We applied the description to the special case of station-
ary heat and mass transport through and into a surface.
Transport along the surface is in many respects like a two-
dimensional analog of flow in a homogeneous medium. The
presence of the surface has more influence on transports in
the normal direction. We find that there is, for instance, a
strong effect of the surface on the temperature and the con-
centration profiles. This effect increases when we increase
the contribution proportional to the square gradient of the
order parameter to the resistivity in the interfacial region.

We conclude that the description we have given, using an
extension of the square gradient model, will be a useful tool
to study many details of the dynamics of evaporation and
condensation in multicomponent systems. Nonequilibrium
molecular dynamic simulations of evaporation and conden-
sation can obtain density, mass fraction, and temperature pro-
files. We expect the comparison of these profiles with the
present model to be very useful. In particular, this will give
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insight into the size and possible density, mass fraction, and
temperature dependence of the coefficient 	. In this manner
we expect the model to form a bridge between the micro-
scopic description using nonequilibrium molecular dynamic
simulations and the discrete macroscopic description using
the excess densities introduced by Gibbs �21�. In a future
paper we intend to investigate whether the discrete descrip-
tion satisfies the local equilibrium assumption for an arbi-
trary choice of the dividing surface, a property which was
verified for one-component systems �8�. This would be a
rather remarkable result, given the fact that the continuous
description does not obey this property. For a systematic de-
velopment of the nonequilibrium thermodynamic a descrip-
tion of the surfaces this property is essential �22,23�.

APPENDIX A: THE GRADIENT COEFFICIENTS

For a mixture modeling it is important to know the nu-
merical values of the gradient coefficients. All these coeffi-
cients are in principle known functions of the densities. In
practice they are not known for mixtures. Only the values for
pure components are more or less known. Thus, it is neces-
sary to express the cross coefficients in a form such that we
can approximate them using pure-component values. From
the equilibrium analysis for the specific quantities per unit of
volume, which can be done analogously as was done in Sec.
II, one can see that �ij

v are simply related to the pure-
component coefficients. The superscript v here indicates
quantities used in the description per unit of volume. On the
other hand, the mass coefficients �, �i, and �ij are related to
the volume coefficients �ij

v as follows:

� = 	
i,j=1

n−1

�i� jkij
v + 2	

i

n−1

�iki
v + kv,

�i = �	
j=1

n−1

� jkij
v + �ki

v,

�ij = �2kij
v , �A1�

where

kij
v � �ij

v + �nn
v − �in

v − �nj
v ,

ki
v � �in

v − �nn
v ,

kv � �nn
v . �A2�

Now we can introduce so-called mixing rules for the gradient
coefficients. We will assume that, for instance, �ii

v =�i
v is the

coefficient for the pure component i. Cross coefficients can
then be approximated by one of the so-called mixing rule for
the gradient coefficients. We will assume the mixing rule

�ij
v = ��i

v� j
v. �A3�

This mixing rule for the volume coefficients is analogous to
the mixing rule for aik given in Sec. III.

APPENDIX B: HELMHOLTZ ENERGY OF A MIXTURE
OF IDEAL GASES

According to �24� the total Helmholtz energy of a homo-
geneous mixture of ideal gases is

F0,id�T,c,
� = − RT	
k=1

n

�k ln� ewk�T�
ckNA�k

3�T�� , �B1�

where �k is the number of moles and ck the molar density of
component k. Furthermore, �k is the thermal de Broglie
wavelength and wk is a characteristic sum over the internal
degrees of freedom of component k:

�k�T� � �NA
�2�/MkRT ,

wk�T� � 	
�

exp�− �k
�/kBT� , �B2�

where Mk is the molar mass of component k and �k
� are the

energy levels of the internal degree of freedom of component
k. If one describes the mixture using molar specific variables,
the following equivalent expression is more useful:

F0,id�T,c,
� = − �RT ln� ew�T,
�
cNA�3�T,
��

− RT	
k=1

n

�k ln� c

ck

�3�T�
�k

3�T,
�
wk�T�
w�T,
�� , �B3�

where c is the total molar density of the mixture,

��T,
� � �NA
�2�/M�
�RT �B4�

is the mixture’s thermal de Broglie wavelength, w�T ,
� a
characteristic sum over all the internal degrees of freedom of
the mixture, and

M�
� = 	
k=1

n


kMk = Mn + 	
k=1

n−1


k�Mk − Mn� �B5�

is the molar mass of the mixture. The exact expression for
w�T ,
�, as well as expression for wk�T�, is determined by
model approximation for the mixture.

The specific Helmholtz energy of a mixture of ideal gases
then becomes

f0,id�T,c,
� = − RT ln� ew�T,
�
cNA�3�T,
��

− RT	
k=1

n


k ln�
k
−1� Mk

M�
��
3/2 wk�T�

w�T,
�
 .

�B6�

Due to the spirit of a the one-fluid approach, we have to
equate the second term to 0. Thus,

f0,id�T,c,
� = − RT ln� ew�T,
�
cNA�3�T,
�� , �B7�

where
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w�T,
� = exp�	
k=1

n


k ln�
k
−1� Mk

M�
��3/2

wk�T�
� �B8�

can be considered as a mixing rule for the w. We note that
Eq. �B7� together with Eq. �B8� does not impose any as-
sumptions: it is nothing but Eq. �B6� written with the help of
one-fluid terms.

APPENDIX C: TWO-DIMENSIONAL ISOTROPIC
COMPONENTS IN THE THREE-DIMENSIONAL

TENSORIAL QUANTITIES

As in Sec. VII, we shall use the special notation for the
tensorial quantities of different order and different behavior
in this section. Any tensorial quantity is denoted as Q�dr�. d
indicates the dimensionality of the space, in which the quan-
tity is being considered, and can be either 3 or 2 here. r
indicates the rank of the tensorial quantity and can be s for
scalar, v for vectorial, or t for tensorial quantities. For ex-
ample, Q�2t� indicates the two-dimensional tensor—i.e., the
quantity �

q11

q21

q12

q22
�, where qij are numbers and Q�3v� indicates

the three-dimensional vector—i.e., the quantity �q1 ,q2 ,q3�,
where qi are numbers. Scalars are the numbers irrespectively
of the dimensionality of the space, so they will be denoted
simply by Q�s�.

Some quantities reveal the tensorial behavior of a some
rank in d-dimensional space only under some specified trans-
formations, while in general they do not. In this section we
are interested only in rotations around and reflections with
respect to some constant vector N�3v� in three-dimensional
space. We will denote quantities which reveal the tensorial
behavior of rank r under these transformations by Q�drN�.

We show how in the presence of the constant vector N�3v�

one can split the tensorial quantity Q�3r� into a combination
of the tensorial quantities Q�2rN�. Without loss of generality
we will assume that N�3v�= �1,0 ,0�.

From the 3D vector V�3v� one can construct the following
quantities, which are linear in V�3v�: one scalar quantity

V�sN� � V�3v� · N�3v� = V1
�3v�

and one vectorial quantity

V�3vN� � V�3v� − V�sN�N�3v� = �0,V2
�3v�,V3

�3v�� ,

which is perpendicular to the N�3v�. Denoting V�2vN�

��V2
�3v� ,V3

�3v�� we can write that V�3vN�= �0,V�2vN��. Thus,

V�3v� = V�sN�N�3v� + V�3vN� = �V�sN�,V�2vN�� . �C1�

From the 3D tensor T�3t� one can construct the following
quantities, which are linear in T�3t�: two scalar quantities

T0
�s� � Tr T�3t� = T11

�3t� + T22
�3t� + T33

�3t�

and

T1
�sN� � N�3v� · T�3t� · N�3v� = T11

�3t�,

two vectorial quantities

Tl
�3vN� � N�3v� · T�3t� − T1

�sN�N�3v� = �0,T12
�3t�,T13

�3t��

and

Tr
�3vN� � T�3t� · N�3v� − T1

�sN�N�3v� = �0,T21
�3t�,T31

�3t��

�which are equal, if T�3t� is symmetric�, and the tensorial
quantity

T�3tN� � T�3t� − T1
�sN�N�3v�N�3v� − Tl

�3vN�N�3v� − N�3v�Tr
�3v�

= �0 0 0

0 T22
�3t� T23

�3t�

0 T32
�3t� T33

�3t� � .

Denoting

Tl
�2vN� � �T12

�3t�,T13
�3t��, T�2tN� � �T22

�3t� T23
�3t�

T32
�3t� T33

�3t� � ,

Tr
�2vN� � �T21

�3t�,T31
�3t�� ,

we can write that

Tl
�3vN� = �0,Tl

�2vN��, T�3tN� = �0 0

0 T�2tN� � ,

Tr
�3vN� = �0,Tr

�2vN�� .

Thus4

T�3t� = T1
�sN�N�3v�N�3v� + Tl

�3vN�N�3v� + N�3v�Tr
�3vN� + T�3tN�

= � T1
�sN� Tl

�2vN�

Tr
�2vN� T�2tN� � . �C2�

The tensor T�2tN� still contains the scalar part

T2
�sN� � Tr T�2tN� = T32

�3t� + T33
�3t�,

which obeys the relation

T0
�s� = T1

�sN� + T2
�sN�. �C3�

Two of these three scalar quantities are linearly independent
and one can use any pair. Since we want to reduce all the
quantities to the form Q�2rN�, we will use T1

�sN� and T2
�sN� as an

independent pair. Introducing the traceless tensors

T
�

�2tN� � T�2tN� − 1
2T2

�sN�U�2t� = �T22
�3t� − 1

2T2
�sN� T23

�3t�

T32
�3t� T33

�3t� − 1
2T2

�sN� �
and

T
�

�3tN� � T�3tN� − 1
2T2

�sN�U�3tN� = �0 0

0 T
�

�2tN�
� ,

4Note that if the product of two tensorial quantities of rank r�0 is
written without a centerdot �·�, it means that this is the product, not
the internal product.
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where

U�2t� � �1 0

0 1
�, U�3tN� � �0 0

0 U�2t� � ,

we can write a 3D tensor as

T�3t� = T1
�sN�N�3v�N�3v� + Tl

�3vN�N�3v� + N�3v�Tr
�3vN�

+ 1
2T2

�sN�U�3tN� + T
�

�3tN�

= � T1
�sN� Tl

�2vN�

Tr
�2vN� 1

2T2
�sN�U�2t� + T

�
�2tN�

� . �C4�
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